
Flock Documentation
Release 1.0.0

Captalys Data Science Team

Dec 04, 2017

Contents

1 Installation 1

2 Getting Started 3

3 Multiprocessing your Functions 7

4 Multiprocessing Database dependent functions 9

5 Multiprocessing DataFrame objects 11

6 Multiprocessing List objects 13

7 Flock Base class 15

8 Indices and tables 17

i

ii

CHAPTER 1

Installation

In order to use Flock Multiprocessing you only need to install it with pip:

pip install flockmp

1.1 Contribute

Please, we want to hear back from you. Go to the github page and make your contributions too. Your help can range
from ideas and improve documentation to actually coding new features!

If you want to clone/fork the repository, follow these steps.

Follow the next steps in order to install the Flock module:

1. git clone http://github.com/Captalys/Flock

2. cd Flock

3. python setup.py develop

4. python -m unittest discover test

Make sure that all the tests run correctly.

1

Flock Documentation, Release 1.0.0

2 Chapter 1. Installation

CHAPTER 2

Getting Started

• Go to the Installation page.

• Learn the basic concepts of Flock.

– FunctionAsync

– DataFrameAsync

– ListAsync

– DatabaseAsync

• Dive in to other tutorials below.

– Basic Function

– Lambdas

– Instance methods

– DataFrames

– Database dependent functions

2.1 Basic Function

We only need to define our iterator, which are the elements that will be applied to the given function.
After that, we use the apply() from the FunctionAsync.

def myFunction(value):
tmp = value ** 2
return tmp

iterator = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
res = FunctionAsync.apply(iterator, myFunction)
res>

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

3

Flock Documentation, Release 1.0.0

2.2 Lambdas

Usage is the same if you have a lambda() function.

iterator = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
res = FunctionAsync.apply(iterator, lambda x: x ** 2)
res>

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

2.3 Instance methods

The regular multiprocessing module can’t handle instance methods very well because they are not
picklable objects. However, you can continue to use the same interface as before for instance methods.

class Test(object):
def compute(self, foo, bar):

tmp = foo + bar
res = tmp ** foo
return res

inst = Test()
iterator = [(val1, val2) for val1, val2 in zip([1,2,3,4], [10,20,30,40])]
res = FunctionAsync(iterator, inst.compute)
res>

[11, 44, 99, 176]

2.4 DataFrames

There are two use cases related to DataFrames already implemented. First, you might want to execute
the apply() function in a row-by-row basis. For example, in order to create a new column using two
existent columns.

df = DataFrame({"foo": [5, 10, 15, 20],
"bar": [1, 2, 3, 4]})

df["new-var"] = DataFrameAsync.apply(df[["foo", "bar"]],
lambda x: (x["foo"] + x["bar"]) ** 2, style="row-

→˓like")

Using the previous method, Flock will split your DataFrame into chunks, send each chunk to a specific process, and
inside each process it will multiprocess each row. This approach is very scalable if you have a very large dataframe
and only want to perform an apply method.

The next use case is block based. Imagine you want to use your entire dataframe as input to some operation that will
be applied to every column.

df = DataFrame({"foo": list(range(1000)),
"bar": list(range(2000, 3000))})

df_new = DataFrameAsync.apply(df, lambda x: x ** 2, style="block-like")

4 Chapter 2. Getting Started

Flock Documentation, Release 1.0.0

2.5 Database dependent functions

This is a very useful class if you work with many databases in your code base. One of the main problems
with multiprocessing and databases is related to the impossibility of sending a connection object to each
open process. This becomes very annoying since you have multiple databases with several drivers.

One known solution to this problem is the guidance to open your connection inside the multiprocessed
function. However, this is a very bad idea sometimes because the time you might take to connect can be
very long and you will not gain the full benefits of multiprocessing.

The strategy adopted by Flock is to divide this problem into two steps. First, you need to create a
DatabaseSetup instance to inform all the connections and name variables you are using inside the
function you desire to multiprocess.

Using this instance, Flock will establish all your needed connections only once per process and reuse
the connections for each task that processes get assigned to perform. Let’s see that in action mocking a
MySQL connection (SQLAlchemy) and a Apache Cassandra connection (cassandra-driver).

def myFunction(value, cass_con, mysql_con):
getData = pd.read_sql("select * from cool_table", mysql_con)
saveData = cass_con.execute("insert data to your cassandra_cool table")
return True

you probably have a method to connect to the database. Send the method without
→˓making the call
mysqlCreateCon = MysqlConnectionClass.yourConnectMethod
cassCreateCon = CassandraConnectionClass.yourConnectMethod

create the setup instances
mysqlSetup = DatabaseSetup(server=mysqlCreateCon, name="mysql_con",

parameters={"password": "password1", "user": "root"})

cassSetup = DatabaseSetup(server=cassCreateCon, name="cass_con",
parameters={"keyspace": "__default__", "ip": "0.0.0.0"})

now we send the two setup connections to the databaseasync
dbAsync = DatabaseAsync(setups=[mysqlSetup, cassSetup])
res = dbAsync.apply(iterator=[1, 2, 3, 4, 5, 6], myFunction)

In the setup process, the attribute name should be the same value as the variable name inside the myFunction()
that will be processed. As you can see, the setup process can be a little boring, so we have a BaseDatabaseSetup
to be extended and you can hide all this portion inside your code.

2.5. Database dependent functions 5

Flock Documentation, Release 1.0.0

6 Chapter 2. Getting Started

CHAPTER 3

Multiprocessing your Functions

Flock supports the following list of functions:

• Lambdas

• Instance methods

• Class methods

• Regular functions

If your function needs a connection to any database to perform its computation, please use the DatabaseAsync
class.

class flockmp.FunctionAsync
FunctionAsync is a class to apply and manage multiprocessing tasks within functions.

classmethod apply(iterator, function, poolSize=5)
Method apply() executes a function asynchronously given an iterator.

Parameters

• iterator (iter) – variable in which the function will be applied.

• function (func) – a function in which is desired to be ran multi-processed.

Returns the list with the results of function(iterator).

3.1 Example

_list = list(range(2000))
res = FunctionAsync.apply(_list, lambda x: x ** 2 / 10)

7

Flock Documentation, Release 1.0.0

8 Chapter 3. Multiprocessing your Functions

CHAPTER 4

Multiprocessing Database dependent functions

4.1 DatabaseSetup

Abstract class used to extend and create your custom interfaces to connect the desired database.

9

Flock Documentation, Release 1.0.0

10 Chapter 4. Multiprocessing Database dependent functions

CHAPTER 5

Multiprocessing DataFrame objects

class flockmp.dataframe.DataFrameAsync

classmethod apply(dataframe, function, style=’row-like’, chunksize=100, poolSize=5)
First we segmentat the orginal DataFrame in chunks, then the executeAsync() will parallelize the
function’s operations on the segmented dataframes. There two options for the way it will operate, as
row-like or block-like.

Parameters

• dataframe (DataFrame) – Input Dataframe

• fuction (func) – Function to be applied on the dataframe

• chunksize (int) – How many chunks the original dataframe will be splitted

• poolSize (int) – Number of pools of processes

• style (str) – if “row-like” function() will be applied in row-by-row, otherwise it
will be applied in DataFrame chunks.

5.1 Example

df = DataFrame({"a": list(range(1000)),
"b": list(range(1000, 2000))})

res = DataFrameAsync.apply(df, lambda x: x ** 2, style="block-like")

11

Flock Documentation, Release 1.0.0

12 Chapter 5. Multiprocessing DataFrame objects

CHAPTER 6

Multiprocessing List objects

class flockmp.list.ListAsync

classmethod apply(_list, function, poolSize=5)
First we segmentat the orginal List in chunks, then the executeAsync() will parallelize the func-
tion’s operations on the segmented lists.

Parameters

• _list (list) – Input List

• fuction (func) – Function to be applied on the list

• poolSize (int) – Number of pools of processes

6.1 Example

_list = list(range(2000))
res = ListAsync.apply(_list, lambda x: x ** 2 / 10)

13

Flock Documentation, Release 1.0.0

14 Chapter 6. Multiprocessing List objects

CHAPTER 7

Flock Base class

Base class used to build the ListAsync, DataFrameAsync and FunctionAsync classes.

You should avoid using this class inside your code. The interface might change without previous notice.

class flockmp.base.BaseMultiProc(poolSize=5, timeOutError=50, context=’spawn’)
BaseMultiProc is a class to apply and manage multiprocessing tasks within functions.

Parameters

• poolSize (int) – amount of resources set to be processed the same time (default = 5)

• timeOutError (int) – degree of tolerance for waiting a process to end (default = 50)

• context (str) – way of starting a process (depends os the platform). It can be “spawn”,
“fork” or “forkserver” (‘default‘=”spawn”)

executeAsync(function, iterator)
Method executeAsync() executes a function asynchronally, given a set of iterators.

Parameters

• function (func) – a function in which is desired to be ran multiprocessed and asyn-
chronally

• iterator (iter) – variable in wich the function will be applied

Returns the result of the function given a set of arguments of that function.

7.1 Example

bp = BaseMultiProc()
iterator = list(range(10))
res = bp.executeAsync(lambda x: x ** 2, iterator)

15

Flock Documentation, Release 1.0.0

16 Chapter 7. Flock Base class

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

17

Flock Documentation, Release 1.0.0

18 Chapter 8. Indices and tables

Index

A
apply() (flockmp.dataframe.DataFrameAsync class

method), 11
apply() (flockmp.FunctionAsync class method), 7
apply() (flockmp.list.ListAsync class method), 13

B
BaseMultiProc (class in flockmp.base), 15

D
DataFrameAsync (class in flockmp.dataframe), 11

E
executeAsync() (flockmp.base.BaseMultiProc method),

15

F
FunctionAsync (class in flockmp), 7

L
ListAsync (class in flockmp.list), 13

19

	Installation
	Getting Started
	Multiprocessing your Functions
	Multiprocessing Database dependent functions
	Multiprocessing DataFrame objects
	Multiprocessing List objects
	Flock Base class
	Indices and tables

